Bounds on neighborhood total domination in graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on neighborhood total domination in graphs

In this paper, we continue the study of neighborhood total domination in graphs first studied by Arumugam and Sivagnanam [S. Arumugam, C. Sivagnanam, Neighborhood total domination in graphs, Opuscula Math. 31 (2011) 519–531]. A neighborhood total dominating set, abbreviated NTD-set, in a graph G is a dominating set S in G with the property that the subgraph induced by the open neighborhood of t...

متن کامل

Bounds on Global Total Domination in Graphs

A subset S of vertices in a graph G is a global total dominating set, or just GTDS, if S is a total dominating set of both G and G. The global total domination number γgt(G) of G is the minimum cardinality of a GTDS of G. We present bounds for the global total domination number in graphs.

متن کامل

Bounds on the Inverse Signed Total Domination Numbers in Graphs

Abstract. Let G = (V,E) be a simple graph. A function f : V → {−1, 1} is called an inverse signed total dominating function if the sum of its function values over any open neighborhood is at most zero. The inverse signed total domination number of G, denoted by γ0 st(G), equals to the maximum weight of an inverse signed total dominating function of G. In this paper, we establish upper bounds on...

متن کامل

Bounds on total domination in claw-free cubic graphs

A set S of vertices in a graphG is a total dominating set, denoted by TDS, ofG if every vertex ofG is adjacent to some vertex in S (other than itself). The minimum cardinality of a TDS ofG is the total domination number ofG, denoted by t(G). IfG does not contain K1,3 as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek,...

متن کامل

Total domination in $K_r$-covered graphs

The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2013

ISSN: 0166-218X

DOI: 10.1016/j.dam.2013.05.014