Bounds on neighborhood total domination in graphs
نویسندگان
چکیده
منابع مشابه
Bounds on neighborhood total domination in graphs
In this paper, we continue the study of neighborhood total domination in graphs first studied by Arumugam and Sivagnanam [S. Arumugam, C. Sivagnanam, Neighborhood total domination in graphs, Opuscula Math. 31 (2011) 519–531]. A neighborhood total dominating set, abbreviated NTD-set, in a graph G is a dominating set S in G with the property that the subgraph induced by the open neighborhood of t...
متن کاملBounds on Global Total Domination in Graphs
A subset S of vertices in a graph G is a global total dominating set, or just GTDS, if S is a total dominating set of both G and G. The global total domination number γgt(G) of G is the minimum cardinality of a GTDS of G. We present bounds for the global total domination number in graphs.
متن کاملBounds on the Inverse Signed Total Domination Numbers in Graphs
Abstract. Let G = (V,E) be a simple graph. A function f : V → {−1, 1} is called an inverse signed total dominating function if the sum of its function values over any open neighborhood is at most zero. The inverse signed total domination number of G, denoted by γ0 st(G), equals to the maximum weight of an inverse signed total dominating function of G. In this paper, we establish upper bounds on...
متن کاملBounds on total domination in claw-free cubic graphs
A set S of vertices in a graphG is a total dominating set, denoted by TDS, ofG if every vertex ofG is adjacent to some vertex in S (other than itself). The minimum cardinality of a TDS ofG is the total domination number ofG, denoted by t(G). IfG does not contain K1,3 as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek,...
متن کاملTotal domination in $K_r$-covered graphs
The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2013
ISSN: 0166-218X
DOI: 10.1016/j.dam.2013.05.014